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Scaling Properties of the Measure of Constant 
Topological Entropy 
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The topological entropy for some families of one-dimensional unimodal maps is 
studied. By arranging the windows of constant topological entropy in a binary 
tree, we have obtained the total measure of these windows. The scaling 
properties of this measure are studied. 
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1. I N T R O D U C T I O N  

The topological entropy for a dynamical system is defined as 

log Nn 
h=  lim (1) 

n ~ o o  n 

where Nn is the total number of periodic points in cycles of period n. 
By the definition of the topological entropy, for a one-dimensional 

quadratic map [the following results can also be applied to other families 
of unimodal maps, such as map (5) (l~ although rigorous proof is lacking] 

xn+l = f~(xn) (2) 

the topological entropy is not zero only in the chaotic regime. As 2 
increases and before it reaches the first period-doubling bifurcation 
accumulation point 2~, the topological entropy is zero since there are only 
finitely many stable and unstable periodic cycles. As 2>2o~, all the 
previous periodic cycles will be unstable and there are infinitely many of 
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them. Hence the topological entropy is not zero. Since the number of 
unstable cycles will increase as 2 increases, the topological entropy is 
expected to be an increasing function of 2. As we know, there are infinitely 
many periodic windows in the chaotic regime. For a parameter in any of 
these windows there exists a stable periodic cycle (more conditions must be 
imposed to guarantee uniqueness of the stable periodic cycle). The 
topological entropy is constant in these windows. Therefore the topological 
entropy is an increasing function with infinitely many constant steps. 
Intuitively, the larger the topological entropy, the more chaotic the system 
is. 

We can arrange all the periodic windows in the chaotic regime in a 
symbolic binary tree. (1'2) We will define a window in the parameter axis 
with constant topological entropy a T-window. Since in a periodic window 
the topological entropy is constant, a T-window contains one periodic 
window. The left endpoint of a T-window is the same as that of the 
periodic window it contains, while the right endpoint is different. 

There are different approaches to computing the topological entropy. 
One intuitive and time-consuming way is to use the definition directly. 
Biham and Wenzel (3) introduced a method to derive all the untable cycles. 
We could also use the cycle expansion (4'5) approach to compute the 
topological entropy. But the symbolic alphabet must be obtained to use 
this method. 

We will study two quadratic maps in this paper: 

x , + l = - a - x ]  (3) 

x .  +1 = r (1  - x~ )  ( 4 )  

All the quadratic maps are topologically conjugate, i.e., there exists a linear 
transformation that map (3) can be transformed to map (4) with a rescale 
of the parameter. It is expected that the topological properties or the metric 
properties are the same, but some quantities, for example, the sizes of 
windows, are different. 

We will also study a map with quadratic maximum 

x, + 1 = r sin(~x,) (5) 

and the piecewise linear unimodal map obtained by slicing off all x >~ xp of 
the tent map, 

where Xp 

fo (x )  = 2x, 0 ~ x <~ Xp/2 

fc (x)  = Xp, Xp/2 < x < 1 -- Xp/2 

f l ( x ) = 2 ( 1 - - x ) ,  1 - - X p / 2 < . x ~ l  

is the parameter of map (6). 

(6) 
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In the next section, we will construct the windows of constant 
topological entropy. In Section 3 the measure of these windows and their 
scaling properties will be studied. 

2. W I N D O W S  OF C O N S T A N T  T O P O L O G I C A L  E N T R O P Y  

The symbolic dynamics is defined as in refs. 1 and 6, i.e., for a point 
x, if fk (x)  > c, then I k = R; if fk (x)  < c, then Ik = L; else Ik = c, where c is 
the critical point of the unimodal map. IoIlI2.. .  is the itinerary or sym- 
bolic sequence. In the following, 1 and 0 may be used interchangeably as 
R and L, respectively. If P, a symbolic sequence composed of R and L, 
contains an even number of R's, we say P is even; otherwise, P is odd. A 
superstable cycle is the one with c as a point in the orbit. A superstable 
symbolic sequence is a symbolic sequence starting from c and ending with 
c and thus corresponding to a superstable cycle. In the following, we will 
always start from c to construct the symbolic dynamics and c will be 
ignored. 

As in refs. 2 and 6, the periodic windows in the chaotic regime can be 
arranged in a binary tree. Each of these windows is represented by a 
superstable symbolic sequence. Similarly, we can arrange all the T-windows 
in the same symbolic binary tree with each T-window being represented by 
the same corresponding superstable symbolic sequence. The left endpoints 
of the windows are the same as those of the periodic windows, while the 
right endpoints are different. 

Considering the T-window denoted by the superstable orbit RL or 10, 
for a parameter value in the neighborhood of the superstable parameter 
value, the symbolic sequence is either RLR or RLL. We know RLR < RLL, 
or 2~-Z-~ < 2~-zz (-P is defined as ppppp...).(2.6) For maps (3)-(5) the left 
endpoint of the T-window is determined by (2) 

f f ( x ) = x  (7) 

D x f f ( x )  = 1 (8) 

where p = 3 in this case. 
For  map (6), it is determined by the symbolic sequence RLR or 101. 

In Fig. 1, the third iterate of map (6) is shown. The portion we are 
interested in a magnified in Fig. 2. As the parameter Xp increases, as long 
as the map remains in the window, the topological entropy will not change. 
The symbolic sequence of the largest xp (i.e., the largest parameter that the 
map in Fig. 2 maps into itself) is RLLRLR. This will define the right 
endpoint of the T-window represented by RL to be RLLRLR. 

Therefore for a T-window denoted by a superstable symbolic sequence 
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Fig. 1, 

X 

The third iterate of map (6) at Xp = x i N  showing the two fixed points x ~ r  and x r ~ ,  

P, the right endpoint is represented by P L P R  if P is odd; P R P L  otherwise. 
For maps (3)-(5), it is determined by the bisection method described in 
ref. 2. The left endpoints is determined by Eqs. (7) and (8) with p being the 
period of the superstable cycle represented by P. Details of the computa- 
tion are given in ref. 2. 

X 
Fig. 2. The local dynamics of map (6) for Xp = xg66. 
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For  m a p  (6), given P =  s~s2.., s , ,  where s i =  1 or 0, the period points  
are given by 

Xs~s2..-sn 2 n -- 1 " el e2 �9 " en, sk = even 
k = l  

22" 
- 2 2" - 1 -ele2 ".- e2n, sk = odd 

k = l  

(9) 

Therefore,  for m a p  (6), for a given superstable symbolic  sequence P, the 
left endpoint  is given by P1  if P is odd and P 0  otherwise. The  right 
endpoint  is POP1 if P is odd and P1PO otherwise. Making  use of (9), the 
corresponding endpoints  in the pa rame te r  axis can be determined. 

3, THE SCALING PROPERTIES OF T - W I N D O W S  

In the above,  the windows of constant  topological  en t ropy or 
T-windows are constructed. An interesting question is, Wha t  is the ineasure 
of these windows and what  universal behavior  exists for this measure?  

We will define a "fatness'  exponent  fl in t roduced by Fa rmer  ~7) in 
studying the periodic windows. 

Let T(e) be the sum of the measures  of all the windows with size 
greater  than or equal  to e. Then T(0) is the measure  of all the windows. It  
is conjectured that  as e ~ 0, 

T(O) -T(e )~_Aa  ~ (10) 

and the exponent /3  is universal  for the class of maps  with the same order  
of max imum,  where A is a constant.  Since 

log [T(0 )  - T(e)]  = log A + fl log e (11) 

fi can be determined f rom the curve of l o g [ T ( 0 ) -  T(e)]  vs.log e. 
We will ar range all these windows in the binary tree. Let Sn be the 

part ial  sum of all the windows in level ~<n. We also conjecture that  for the 
class of maps  with the same order  of max imum,  S,  ~ S o  with the same 
asympto t ic  behavior :  

S~ ~ Sooe -~/n~ (12) 

log Sn -~ log Soo - n--~ (13 ) 

Tha t  is, ~c and c~ is universal  for maps  with the same order  of  max imum.  
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F ig .  3. T h e  par t ia l  s u m  o f  t h e  m e a s u r e  at  l eve l  n p l o t e d  a g a i n s t  n for m a p  (3). 

Up to 13 levels of the binary tree (more than 8000 windows) are 
included in our computation. The partial sum of the measures for maps (3) 
and (6) is plotted against level n in Figs. 3 and 4. As shown in the figure, 
for the quadratic maps, the convergence is very rapid. The convergence 
is much slower for map (6). For map (3), the fraction of the windows in 
the chaotic regime is 0.1373_+0.0005. For map (4), this number is 
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Fig.  4. T h e  part ia l  s u m  o f  the  m e a s u r e  at  l eve l  n p l o t t e d  a g a i n s t  n for m a p  (6) .  
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2 4 6 8 10 12 

Fig. 5. The normalized partial sum of the measure at level n plotted against n for (~) map 
(3) and (+) map (4). 

0 .1380+0.0007.  It is 0.1450_+0.0003 for map (5). To obtained these 
numbers  the contributions of each of the 13 levels in the binary tree are 
studied and an extrapolat ion is made. The error is estimated to be greater 
than or equal to the difference between the extrapolated total measure and 
the measure obtained from the total 13 levels. It is hard to conclude 
whether this fraction is universal for quadratic maps. It is certainly different 

+ 
a 

z~ 

F i g .  6. 

0 2 4 6 8 10 12 14 

T h e  n o r m a l i z e d  p a r t i a l  s u m  o f  t h e  m e a s u r e  a t  level  n p l o t t e d  a g a i n s t  n fo r  (A)  

map (3) and (+)  (5). 
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log(s,) 

map (5) 

Fig. 7. P lo t  of log Sn agains t  -- 1In z5 for m a p  (5) when n = 7 ..... 13. 

for map (3) and map (5), even though they have the same order of 
maximum, 

The normalized partial sum of the measure Sn/S13 for maps (3) and 
(4) is shown in Fig. 5 [A, map (3); +,  map (4)]. The same is shown for 
map (3) and map (5) in Fig. 6. It is seen that the asymptotic behavior as 
n ~ c~ is the same for maps (3)-(5), which supports our conjecture that 
Sn~So~ with universal behavior for maps with the same order of 
maximum. 

l o g ( S n )  

J 

J 

map (6) 0.60 

Fig. 8. P lo t  of log S,  aga ins t  - 1/n ~ for m a p  (6) when n = 7,..., 13. 
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Fig. 9. Plot of logz[T(0 ) -  T(e)] against log2 ~ for map (4) (A, n = 13; +, n = 12). 

W e  have  found  ~ = 2 . 5 _ + 0 . 3  and  c~=6 .0_+0 .8  for m a p s  (3 ) - (5 ) .  W e  
plot  log  Sn aga ins t  -1 In  z5 in Fig. 7 for n = 7 , . . . ,  13. For  m a p  (6), 
~c = 0.60 _+ 0.03 and  c~ = 2.1 _+ 0.1. In Fig. 8, log  Sn is p lot ted  against  - 1/n ~176 
for n --- 7,..., 13. F i t t ing  log  S ,  wi th  a straight l ine for var ious  exponents ,  we 
obta in  tr as the best  fit. The  error of  ~: is the step size to the nearest  f itt ing 
value.  After x is obta ined ,  c~ is e s t imated  from the s lope  of  the straight line. 

In Figs.  9 and  10, l o g 2 [ T ( 0 )  - T(e ) ]  is p lot ted  against  log2 8 for m a p s  
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Plot of [T(0) - T(e)] against log 2 e for map (6) (A, n = 13; +,  n = 12). 
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(3) and (6), where the estimated T(0) is used, and + signs represent the 
data including all the windows up to level 12 and A represents the data of 
all the windows up to level 13. The deviation from a straight line indicates 
that some windows with size comparable to the deviation point are missed. 
For maps (3)-(5) the exponent/3 is estimated to be 0.45 _+ 0.05, while for 
map (6),/~ = 0.30 _+ 0.05. 
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